Rigid Collapse

Monroe Eskew

KGRC

Winter School in Abstract Analysis January 30, 2018 A mathematical structure is *rigid* if it has no automorphisms besides the identity map.

Theorem (Woodin, Larson, after Foreman-Magidor-Shelah)

MM implies that the boolean algebra $\mathcal{P}(\omega_1)/NS$ is rigid.

Idea: MM implies NS_{ω_1} is *saturated*, and thus forcing with $\mathcal{P}(\omega_1)/NS$ generates an elementary embedding $j: V \to M \subseteq V[G]$, where $M^{\omega} \cap V[G] \subseteq M$.

The forcing codes information into the manipulation of sufficiently absolute properties, which correlate to the details of the embedding, so that only one embedding can exist.

Prior results

Theorem (Cody-E.)

If GCH holds and there is a saturated ideal on $\kappa = \mu^+$, where μ is regular, then there is a μ -closed, κ -c.c. forcing extension satisfying $2^{\mu} = \kappa^+$ and an analogue of MA, where the generated ideal is rigid and saturated.

Theorem (Cody-E.)

If κ is almost-huge and $\mu < \kappa$ is regular and uncountable, then there is a μ -distributive forcing extension satisfying GCH + $\kappa = \mu^+ +$ "There is a rigid saturated ideal on κ ."

Using the same technique as above (coding into stationarity on μ), we showed:

Theorem (Cody-E.)

The existence of a rigid precipitous ideal on ω_2 is equiconsistent with a measurable cardinal.

Monroe Eskew (KGRC)

Theorem (E.)

It is consistent relative to a huge cardinal to have GCH + "Every successor cardinal carries a rigid saturated ideal."

More generally:

Theorem (E.)

Suppose κ is a Mahlo cardinal and $\mu < \kappa$ is regular. Then there is a μ -directed-closed, κ -c.c. partial order RigCol $(\mu, \kappa) \subseteq V_{\kappa}$ forcing $\kappa = \mu^+$, and whenever $G \subseteq \text{RigCol}(\mu, \kappa)$ is generic over V, then in V[G], G is the unique filter which is RigCol (μ, κ) -generic over V.

Splitting– a Σ_1 property!

Suppose $V \subseteq W$ are models of set theory.

 $\begin{aligned} \mathsf{Spl}(\mu,\kappa,V): \ (\exists A\in[\kappa]^{\kappa}) \, (\forall x\in[\kappa]^{\mu}\cap V) (\forall \alpha<\mu) (\exists y,z\in[x]^{<\mu}\cap V) \\ \min\{\mathsf{ot}(y),\mathsf{ot}(z)\}\geq \alpha, y\subseteq A, \text{ and } z\cap A=\emptyset. \end{aligned}$

Lemma

Suppose $\mu < \kappa$ are regular. Then $Col(\mu, <\kappa)$ forces $Spl(\mu, \kappa)$.

Lemma

Suppose $\nu < \mu < \kappa$ are regular and $\alpha^{<\nu} < \kappa$ for all $\alpha < \kappa$. Then:

•
$$\Vdash_{\operatorname{Col}(\nu,<\kappa)} \neg \operatorname{Spl}(\mu,\kappa).$$

• $\Vdash_{\operatorname{Col}(\nu,<\kappa)} \neg \operatorname{Spl}(\nu,\kappa).$

Skipping coordinates

Lemma

Suppose κ is Mahlo. Let $X \subseteq \kappa$ be a set of regular cardinals such that for some regular $\mu < \kappa$, $\mu^+ \notin X$. Then the partial order

$$\mathbb{P} = \prod_{lpha \in X}^{E} \mathsf{Col}(lpha, <\kappa)$$

is κ -c.c. and forces \neg Spl (μ^+, κ) .

Proof sketch:

$$\mathbb{P} \cong \prod_{\alpha \in [0,\mu] \cap X}^{E} \mathsf{Col}(\alpha, <\kappa) \times \prod_{\alpha \in [\mu^{++}, \kappa) \cap X}^{E} \mathsf{Col}(\alpha, <\kappa) := \mathbb{P}_0 \times \mathbb{P}_1$$

 \mathbb{P}_1 is μ^{++} -closed and κ -c.c. Let $G_1 \subseteq \mathbb{P}_1$ be generic and work in $V[G_1]$. Suppose $q \Vdash_{\mathbb{P}_0}^{V[G_1]} \dot{A} \in [\kappa]^{\kappa}$. When possible, let $p_{\alpha} \leq q$ be such that $p_{\alpha} \Vdash \alpha \in \dot{A}$. Let $\langle \alpha_i : i < \kappa \rangle$ enumerate the set of α for which p_{α} is defined.

Since the set of ordinals below κ which were regular in V remains stationary in $V[G_1]$, we can find a stationary $S \subseteq \kappa$ such that $\{p_{\alpha_i} : i \in S\}$ forms a Δ -system with root $r \leq q$.

For every $z \in [S]^{\mu}$ and every $s \leq r$, $s \nvDash \{\alpha_i : i \in z\} \cap \dot{A} = \emptyset$, since $|s| < \mu$.

This shows that \mathbb{P}_0 forces $\neg \operatorname{Spl}(\mu^+, \kappa, V[G_1])$ over $V[G_1]$. Since $([\kappa]^{\mu^+})^V = ([\kappa]^{\mu^+})^{V[G_1]}$, \mathbb{P} forces $\neg \operatorname{Spl}(\mu^+, \kappa, V)$. \Box

Construction of RigCol(μ, κ)

Suppose κ is Mahlo and $\mu < \kappa$ is regular. Let

$$\mathbb{P} = \prod_{\alpha \in [\mu, \kappa) \cap \operatorname{Reg}}^{E} \operatorname{Col}(\alpha, < \kappa).$$

 \mathbb{P} can be viewed as a set of partial functions $p : \kappa^3 \to \kappa$. A generic for any suborder of \mathbb{P} is determined by a subset of κ via the Gödel ordering on κ^4 .

$$A_0 = \{ \alpha \in [\mu, \kappa) : \alpha = \mu, \text{ or } \alpha \text{ is inaccessible, or } \alpha = \beta^{+n} \\ \text{for some singular cardinal } \beta \text{ of cofinality } > \mu \\ \text{and some finite } n > 0 \} \times \kappa \times \kappa.$$

For n > 0, let A_n be the set

 $\{\alpha \in [\mu, \kappa) : \alpha = \beta^{+n+1}, \text{ for some singular cardinal } \beta \text{ of cofinality } \mu\} \times \kappa \times \kappa.$

For $n < \omega$, let $\mathbb{Q}_n = \mathbb{P} \upharpoonright A_n$. Note that $\mathbb{P} \upharpoonright \bigcup_{n \in \omega} A_n \cong \prod_{n < \omega} \mathbb{Q}_n$.

Let $\langle \alpha_i : i < \kappa \rangle$ enumerate the singular cardindals of cofinality μ in (μ, κ) . Suppose $G_0 \subseteq \mathbb{P}_0$ is generic over V. Let X_0 be the subset of κ that codes G_0 . In $V[G_0]$, we define a partial order \mathbb{P}_1 and a projection $\pi_1 : \mathbb{Q}_1 \to \mathbb{P}_1$. For $p \in \mathbb{Q}_1$, let

$$\pi_1(p)(\alpha,\beta,\gamma) = \begin{cases} p(\alpha,\beta,\gamma) \text{ if } \alpha = \alpha_i^{++}, \text{ where } i \in X_0, \text{ and} \\ \text{undefined otherwise.} \end{cases}$$

 \mathbb{P}_1 is simply the range of π_1 .

- π_1 is a projection.
- If $i \notin X_0$, then $\Vdash_{\mathbb{P}_1}^{V[G_0]} \neg \operatorname{Spl}(\alpha_i^{++}, \kappa, V)$.
- Whenever $G_0 * G_1$ is $\mathbb{P}_0 * \mathbb{P}_1$ -generic over V, and $G'_0 * G'_1 \in V[G_0 * G_1]$ is also $\mathbb{P}_0 * \mathbb{P}_1$ -generic over V, then $G_0 = G'_0$.

Now we simply continue this process ω many times. Suppose that we have sequences $\langle \mathbb{P}_j : j \leq n \rangle$, $\langle \pi_j : j \leq n \rangle$, and $\langle X_j : j \leq n \rangle$ such that for $1 \leq m \leq n$,

- **Q** \mathbb{P}_m is a subset of \mathbb{Q}_m defined in the extension by $\mathbb{P}_0 * \cdots * \mathbb{P}_{m-1}$.
- X_m is a (P₀ * · · · * P_m)-name for the subset of κ which codes the generic G_m for P_m.
- Solution is forced by P₀ * · · · * P_{m-1} that π_m : Q_m → P_m is the projection defined by restriction to {α_i^{+m+1} : i ∈ X_{m-1}} × κ × κ.

We extend these properties to a sequence of length n + 1.

The elements of RigCol(μ, κ) are just the elements of $\mathbb{P} \upharpoonright \bigcup_{n < \omega} A_n$, but their ordering is different. We put $p \leq_{\text{RigCol}(\mu,\kappa)} q$ when for each n, $\langle p \upharpoonright A_0, \pi_1(p \upharpoonright A_1), \ldots, \pi_n(p \upharpoonright A_n) \rangle \leq \langle q \upharpoonright A_0, \pi_1(q \upharpoonright A_1), \ldots, \pi_n(q \upharpoonright A_n) \rangle$ in $\mathbb{P}_0 * \cdots * \mathbb{P}_n$.

Suppose $\mu < \kappa < \delta$ are regular with κ Mahlo. There are projections:

- From RigCol(μ, δ) to RigCol(μ, κ).
- From RigCol(μ, δ) to RigCol(κ, δ).
- By an argument of Shioya, from RigCol(μ, δ) to RigCol(μ, κ) * RigCol(κ, δ).

Suppose $j: V \to M$ is an almost-huge embedding with $\operatorname{crit}(j) = \kappa$, $j(\kappa) = \delta$ Mahlo, $\mu < \kappa$ regular.

Let $G * H \subseteq \operatorname{RigCol}(\mu, \kappa) * \operatorname{RigCol}(\kappa, \delta)$ be generic. If we force with $\operatorname{RigCol}(\mu, \delta)/(G * H)$, then we can extend the embedding to

$$\hat{j}: V[G * H] \to M[\hat{G} * \hat{H}].$$

In V[G * H] there is a normal ideal I on $\kappa = \mu^+$ such that $\mathcal{P}(\kappa)/I \cong \operatorname{RigCol}(\mu, \delta)/(G * H)$.

 $\mathcal{P}(\kappa)/I$ is rigid, because otherwise we would have a RigCol(μ, δ)-extension $V[\hat{G}]$ in which there is a generic $\hat{G}' \neq \hat{G}$.

Suppose μ is indestructibly supercompact and $\kappa > \mu$ is Mahlo. RigCol (μ, κ) preserves the measurability of μ .

Lemma

Let $X \subseteq \kappa$ be a set of regular cardinals such that for some regular $\nu \in (\mu, \kappa)$, $\nu^+ \notin X$. Let

$$\mathbb{P} = \prod_{\alpha \in X}^{E} \mathsf{Col}(\alpha, < \kappa).$$

Let \mathbb{Q} be Prikry forcing at μ after \mathbb{P} . Then $\mathbb{P} * \dot{\mathbb{Q}}$ forces $\neg \text{Spl}(\nu^+, \kappa)$.

Theorem (Foreman)

If I is a precipitous ideal on κ and $\mathbb P$ is $\kappa\text{-c.c.},$ then

 $\mathbb{P} * \mathcal{P}(\kappa) / \overline{I} \cong \mathcal{P}(\kappa) / I * j(\mathbb{P}).$

Suppose $\mu < \kappa < \delta$ are as before, with μ indestructible. Let $G * H * K \subseteq \operatorname{RigCol}(\mu, \kappa) * \operatorname{RigCol}(\kappa, \delta) * \mathbb{Q}$ be generic.

Since ${\mathbb Q}$ is $\mu\text{-centered},$ it preserves the saturated ideal on $\kappa.$ We have

 $\mathcal{P}(\kappa)/\overline{I} \cong (\operatorname{RigCol}(\mu, \delta) * j(\mathbb{Q}))/(G * H * K).$

A nontrivial automorphism of $\mathcal{P}(\kappa)/\overline{I}$ would give an RigCol $(\mu, \delta) * j(\mathbb{Q})$ -extension $V[\hat{G} * \hat{K}]$ with a different generic $\hat{G}' * \hat{K}'$, with the same Prikry sequence associated to \hat{K} and \hat{K}' .

As before, $\hat{G} = \hat{G}'$. But then $\hat{K} = \hat{K}'$. Contradiction.

Using Radin forcing with interleaved collapses, we can get a model of ZFC + GCH where every successor cardinal carries a rigid saturated ideal. This requires some preservation lemmas about the failure of splitting.

We can also get, for any prescribed successor cardinal κ , a model of GCH where $\mathcal{P}(A)/NS_{\kappa}$ is rigid and saturated for some stationary $A \subseteq \kappa$. Questions:

- Can we get this globally?
- Are there other applications of RigCol?
- (Karagila) Suppose κ is inaccessible, and ℙ is κ-c.c. of size κ forcing κ = ω₁, and ℙ forces unique generics. Is κ Mahlo?

Thank you for your attention!