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Motivation

A mathematical structure is rigid if it has no automorphisms besides the
identity map.

Theorem (Woodin, Larson, after Foreman-Magidor-Shelah)

MM implies that the boolean algebra P(ω1)/NS is rigid.

Idea: MM implies NSω1 is saturated, and thus forcing with P(ω1)/NS
generates an elementary embedding j : V → M ⊆ V [G ], where
Mω ∩ V [G ] ⊆ M.

The forcing codes information into the manipulation of sufficiently
absolute properties, which correlate to the details of the embedding, so
that only one embedding can exist.
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Prior results

Theorem (Cody-E.)

If GCH holds and there is a saturated ideal on κ = µ+, where µ is regular,
then there is a µ-closed, κ-c.c. forcing extension satisfying 2µ = κ+ and an
analogue of MA, where the generated ideal is rigid and saturated.

Theorem (Cody-E.)

If κ is almost-huge and µ < κ is regular and uncountable, then there is a
µ-distributive forcing extension satisfying GCH + κ = µ+ + “There is a
rigid saturated ideal on κ.”

Using the same technique as above (coding into stationarity on µ), we
showed:

Theorem (Cody-E.)

The existence of a rigid precipitous ideal on ω2 is equiconsistent with a
measurable cardinal.
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Main result

Theorem (E.)

It is consistent relative to a huge cardinal to have GCH + “Every successor
cardinal carries a rigid saturated ideal.”

More generally:

Theorem (E.)

Suppose κ is a Mahlo cardinal and µ < κ is regular. Then there is a
µ-directed-closed, κ-c.c. partial order RigCol(µ, κ) ⊆ Vκ forcing κ = µ+,
and whenever G ⊆ RigCol(µ, κ) is generic over V , then in V [G ], G is the
unique filter which is RigCol(µ, κ)-generic over V .

Monroe Eskew (KGRC) Rigid Collapse January 30, 2018 4 / 15



Splitting– a Σ1 property!

Suppose V ⊆W are models of set theory.

Spl(µ, κ,V ) : (∃A ∈ [κ]κ) (∀x ∈ [κ]µ ∩ V )(∀α < µ)(∃y , z ∈ [x ]<µ ∩ V )

min{ot(y), ot(z)} ≥ α, y ⊆ A, and z ∩ A = ∅.

Lemma

Suppose µ < κ are regular. Then Col(µ,<κ) forces Spl(µ, κ).

Lemma

Suppose ν < µ < κ are regular and α<ν < κ for all α < κ. Then:

1 Col(ν,<κ) ¬Spl(µ, κ).

2 Col(µ,<κ) ¬Spl(ν, κ).
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Skipping coordinates

Lemma

Suppose κ is Mahlo. Let X ⊆ κ be a set of regular cardinals such that for
some regular µ < κ, µ+ /∈ X . Then the partial order

P =
E∏

α∈X
Col(α,<κ)

is κ-c.c. and forces ¬Spl(µ+, κ).

Proof sketch:

P ∼=
E∏

α∈[0,µ]∩X

Col(α,<κ)×
E∏

α∈[µ++,κ)∩X

Col(α,<κ) := P0 × P1
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Skipping coordinates

P1 is µ++-closed and κ-c.c. Let G1 ⊆ P1 be generic and work in V [G1].

Suppose q V [G1]
P0

Ȧ ∈ [κ]κ. When possible, let pα ≤ q be such that

pα  α ∈ Ȧ. Let 〈αi : i < κ〉 enumerate the set of α for which pα is
defined.

Since the set of ordinals below κ which were regular in V remains
stationary in V [G1], we can find a stationary S ⊆ κ such that
{pαi : i ∈ S} forms a ∆-system with root r ≤ q.

For every z ∈ [S ]µ and every s ≤ r , s 1 {αi : i ∈ z}∩ Ȧ = ∅, since |s| < µ.

This shows that P0 forces ¬Spl(µ+, κ,V [G1]) over V [G1]. Since
([κ]µ

+
)V = ([κ]µ

+
)V [G1], P forces ¬Spl(µ+, κ,V ). �
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Construction of RigCol(µ, κ)

Suppose κ is Mahlo and µ < κ is regular. Let

P =
E∏

α∈[µ,κ)∩Reg

Col(α,<κ).

P can be viewed as a set of partial functions p : κ3 → κ. A generic for any
suborder of P is determined by a subset of κ via the Gödel ordering on κ4.

A0 = {α ∈ [µ, κ) : α = µ, or α is inaccessible, or α = β+n

for some singular cardinal β of cofinality > µ

and some finite n > 0} × κ× κ.

For n > 0, let An be the set

{α ∈ [µ, κ) : α = β+n+1, for some singular cardinal β of cofinality µ}×κ×κ.

For n < ω, let Qn = P � An. Note that P �
⋃

n∈ω An
∼=

∏
n<ω Qn.
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Construction of RigCol(µ, κ)

Let 〈αi : i < κ〉 enumerate the singular cardindals of cofinality µ in (µ, κ).
Suppose G0 ⊆ P0 is generic over V . Let X0 be the subset of κ that codes
G0. In V [G0], we define a partial order P1 and a projection π1 : Q1 → P1.
For p ∈ Q1, let

π1(p)(α, β, γ) =

{
p(α, β, γ) if α = α++

i , where i ∈ X0, and

undefined otherwise.

P1 is simply the range of π1.

π1 is a projection.

If i /∈ X0, then V [G0]
P1

¬Spl(α++
i , κ,V ).

Whenever G0 ∗ G1 is P0 ∗ P1-generic over V , and
G ′0 ∗ G ′1 ∈ V [G0 ∗ G1] is also P0 ∗ P1-generic over V , then G0 = G ′0.
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Construction of RigCol(µ, κ)

Now we simply continue this process ω many times. Suppose that we have
sequences 〈Pj : j ≤ n〉, 〈πj : j ≤ n〉, and 〈Xj : j ≤ n〉 such that for
1 ≤ m ≤ n,

1 Pm is a subset of Qm defined in the extension by P0 ∗ · · · ∗ Pm−1.

2 Xm is a (P0 ∗ · · · ∗ Pm)-name for the subset of κ which codes the
generic Gm for Pm.

3 It is forced by P0 ∗ · · · ∗ Pm−1 that πm : Qm → Pm is the projection
defined by restriction to {α+m+1

i : i ∈ Xm−1} × κ× κ.

We extend these properties to a sequence of length n + 1.

The elements of RigCol(µ, κ) are just the elements of P �
⋃

n<ω An, but
their ordering is different. We put p ≤RigCol(µ,κ) q when for each n,
〈p � A0, π1(p � A1), . . . , πn(p � An)〉 ≤ 〈q � A0, π1(q � A1), . . . , πn(q � An)〉
in P0 ∗ · · · ∗ Pn.
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Projections

Suppose µ < κ < δ are regular with κ Mahlo. There are projections:

From RigCol(µ, δ) to RigCol(µ, κ).

From RigCol(µ, δ) to RigCol(κ, δ).

By an argument of Shioya, from RigCol(µ, δ) to
RigCol(µ, κ) ∗ ˙RigCol(κ, δ).
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Saturated rigid ideals

Suppose j : V → M is an almost-huge embedding with crit(j) = κ,
j(κ) = δ Mahlo, µ < κ regular.

Let G ∗ H ⊆ RigCol(µ, κ) ∗ ˙RigCol(κ, δ) be generic. If we force with
RigCol(µ, δ)/(G ∗ H), then we can extend the embedding to

ĵ : V [G ∗ H]→ M[Ĝ ∗ Ĥ].

In V [G ∗ H] there is a normal ideal I on κ = µ+ such that
P(κ)/I ∼= RigCol(µ, δ)/(G ∗ H).

P(κ)/I is rigid, because otherwise we would have a RigCol(µ, δ)-extension
V [Ĝ ] in which there is a generic Ĝ ′ 6= Ĝ .
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Successors of singulars

Suppose µ is indestructibly supercompact and κ > µ is Mahlo.
RigCol(µ, κ) preserves the measurability of µ.

Lemma

Let X ⊆ κ be a set of regular cardinals such that for some regular
ν ∈ (µ, κ), ν+ /∈ X . Let

P =
E∏

α∈X
Col(α,<κ).

Let Q be Prikry forcing at µ after P. Then P ∗ Q̇ forces ¬Spl(ν+, κ).
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Successors of singulars

Theorem (Foreman)

If I is a precipitous ideal on κ and P is κ-c.c., then

P ∗ P(κ)/Ī ∼= P(κ)/I ∗ j(P).

Suppose µ < κ < δ are as before, with µ indestructible. Let
G ∗ H ∗ K ⊆ RigCol(µ, κ) ∗ ˙RigCol(κ, δ) ∗ Q̇ be generic.

Since Q is µ-centered, it preserves the saturated ideal on κ. We have

P(κ)/Ī ∼= (RigCol(µ, δ) ∗ j(Q))/(G ∗ H ∗ K ).

A nontrivial automorphism of P(κ)/Ī would give an
RigCol(µ, δ) ∗ j(Q)-extension V [Ĝ ∗ K̂ ] with a different generic Ĝ ′ ∗ K̂ ′,
with the same Prikry sequence associated to K̂ and K̂ ′.

As before, Ĝ = Ĝ ′. But then K̂ = K̂ ′. Contradiction.
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Further results and questions

Using Radin forcing with interleaved collapses, we can get a model of ZFC
+ GCH where every successor cardinal carries a rigid saturated ideal. This
requires some preservation lemmas about the failure of splitting.

We can also get, for any prescribed successor cardinal κ, a model of GCH
where P(A)/NSκ is rigid and saturated for some stationary A ⊆ κ.

Questions:

1 Can we get this globally?

2 Are there other applications of RigCol?

3 (Karagila) Suppose κ is inaccessible, and P is κ-c.c. of size κ forcing
κ = ω1, and P forces unique generics. Is κ Mahlo?

Thank you for your attention!
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